
$a = ‘test’;

$a

$b = $a;

Variables

is_ref 0, refcount 1

(string) ‘test’

$a

is_ref 0, refcount 2

(string) ‘test’

$b = ‘test2’;

$a

is_ref 0, refcount 1

(string) ‘test’ $b

is_ref 0, refcount 1

(string) ‘test2’

$a = $b;

$a

is_ref 0, refcount 2

(string) ‘test2’

$b

$b

PHP5 References Explained Visually
by Monte Ohrt

The dotted square represents a
memory container, with the string
value of “test”. The variable $a points
to this container, thus the container
sets a refcount of 1. (We’ll get to
is_ref later.)

Now $b also points to the same
memory container, upping the
refcount to 2. Conceptually $a and
$b are separate variables, but as
long as they are the same value,
PHP uses to the same memory
container. This drastically reduces
the memory footprint for multiple
variables of the same value.

When $b gets a new value set, a
new memory container for that value
is created, and now $b points to the
new container. $a still points to the
original container. The refcounts are
reset to 1.

Now $a points to the same memory
container of $b. Since the original
container no longer has any
references to it, it gets destroyed.
The refcount is upped to 2.

$c =& $a;

unset($a);

$a

is_ref 1, refcount 2

(string) ‘test2’ $b

is_ref 0, refcount 1

(string) ‘test2’
$c

is_ref 0, refcount 1

(string) ‘test2’ $b

is_ref 0, refcount 1

(string) ‘test2’$c

Arrays

$a = array(1,2,3);

is_ref 0, refcount 1

array(1,2,3)$a

$b = $a;

is_ref 0, refcount 2

array(1,2,3)
$a

$b

With a reference assignment (=&),
is_ref is set to 1. This tells PHP that
$a and $c really are the same value
conceptually, and must reflect that
when one is changed. If we were to
set $a = “foo”, then $c would also
equal “foo” and the pointer doesn’t
change.

If a variable is unset, it is merely
unlinked from its container. Since
“test2” still has $c pointing to it, it is
not destroyed.

With arrays the same basic principles
as scalars still apply. Here $a points
to the memory container of the array,
and the refcount is set to 1.

Again, conceptually $a and $b are
separate values, but PHP points to
the same memory container so long
as they are identical. Any change to
$a or $b will result in a new memory
container, same as the previous
examples.

$c =& $b;

is_ref 0, refcount 1

array(1,2,3)$a

is_ref 1, refcount 2

array(1,2,3)
$b

$c

$c[1] = array(5,6,7);

is_ref 0, refcount 1

array(1,2,3)$a

is_ref 1, refcount 2

array(1,array(5,6,7
),3)

$b

$c

unset($c);

is_ref 0, refcount 1

array(1,2,3)$a

is_ref 0, refcount 1

array(1,array(5,6,7
),3)

$b

$a =& $b;

is_ref 1, refcount 2

array(1,array(5,6,7
),3)$b

$a

Here we assign $c as a reference, so
PHP must create a separate memory
container for $c and $b, and is_ref is
set to 1 so any change to $b will also
happen to $c. $a remains pointing to
the original container.

Since is_ref=1, any change to $c is
also reflected with $b. The pointers
do not change.

again, unset causes $c to be
unlinked from its container, and the
refcount is reduced to 1.

$a is now pointing to $b’s container,
and is_ref is set to 1 so they will be
treated as the same value. The
original container no longer has a
reference, so it is destroyed.

Objects

$a = new Foo;

is_ref 0, refcount 1

(object id) 0$a

object 0

(object) Foo

$b = $a;

is_ref 0, refcount 2

(object id) 0
$a

object 0

(object) Foo
$b

$c =& $b;

is_ref 0, refcount 1

(object id) 0$a

object 0

(object) Foo

is_ref 1, refcount 2

(object id) 0
$b

$c

Objects behave slightly different than
scalars and arrays. Instead of the
variable pointing to the memory
container of the object, it instead
points to the memory container of an
object id, which in turn points to the
memory container of the object. (light
bulb here.)

Now you can apply the same
concepts of arrays and scalars to the
object id. When $b=$a, $b points to
the same object id as $a, but they
both still point to the same object
container.

When we set $c=&$b, a new object
id is created for them, however both
object id’s still point to the same
object container. This is important,
because now if we do something like
$a->foo = “bar”, this will affect $a,
$b, and $c since they all ultimately
point to the same object, even
though the object id’s differ!

unset($b);

is_ref 0, refcount 1

(object id) 0$a

object 0

(object) Foo

is_ref 0, refcount 1

(object id) 0$c

$c = new Bar;

is_ref 0, refcount 1

(object id) 0$a

object 0

(object) Foo

is_ref 0, refcount 1

(object id) 1$c

object 1

(object) Bar

$a =& $c;

is_ref 1, refcount 2

(object id) 1
$a

object 1

(object) Bar
$c

When a variable is unset, it is
unlinked from its container.

$c is now a new object, so a new
object id and object are created for it.

$a now points to the same object id
as $c. Since the original object id has
no reference, it is destroyed. Since
the original object no longer has any
reference, it is also destroyed.

